rECHOmmend: an ECG-based machine-learning approach for identifying patients at high-risk of undiagnosed structural heart disease detectable by echocardiography

Author:

Ulloa-Cerna Alvaro E.,Jing Linyuan,Pfeifer John M.,Raghunath Sushravya,Ruhl Jeffrey A.,Rocha Daniel B.,Leader Joseph B.,Zimmerman Noah,Lee Greg,Steinhubl Steven R.,Good Christopher W.,Haggerty Christopher M.,Fornwalt Brandon K.,Chen RuijunORCID

Abstract

AbstractBackgroundEarly diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. While population screening with echocardiography is impractical, electrocardiogram (ECG)-based prediction models can help target high-risk patients. We developed a novel ECG-based machine learning approach to predict multiple structural heart conditions, hypothesizing that a composite model would yield higher prevalence and positive predictive values (PPVs) to facilitate meaningful recommendations for echocardiography.MethodsUsing 2,232,130 ECGs linked to electronic health records and echocardiography reports from 484,765 adults between 1984-2021, we trained machine learning models to predict the presence of any of seven echocardiography-confirmed diseases within one year. This composite label included: moderate or severe valvular disease (aortic/mitral stenosis or regurgitation, tricuspid regurgitation), reduced ejection fraction <50%, or interventricular septal thickness >15mm. We tested various combinations of input features (demographics, labs, structured ECG data, ECG traces) and evaluated model performance using 5-fold cross-validation, multi-site validation trained on one clinical site and tested on 11 other independent sites, and simulated retrospective deployment trained on pre-2010 data and deployed in 2010.FindingsOur composite “rECHOmmend” model using age, sex and ECG traces had an area under the receiver operating characteristic curve (AUROC) of 0.91 and a PPV of 42% at 90% sensitivity at a prevalence of 17.9% for our composite label. Individual disease models had AUROCs ranging from 0.86-0.93 and lower PPVs from 1%-31%. The AUROC for models using different input features ranged from 0.80-0.93, increasing with additional features. Multi-site validation showed similar results to the cross-validation, with an aggregate AUROC of 0.91 across our independent test set of 11 clinical sites after training on a separate site. Our simulated retrospective deployment showed that for ECGs acquired in patients without pre-existing known structural heart disease in a single year, 2010, 11% were classified as high-risk, of which 41% developed true, echocardiography-confirmed disease within one year.InterpretationAn ECG-based machine learning model using a composite endpoint can predict previously undiagnosed, clinically significant structural heart disease while outperforming single disease models and improving practical utility with higher PPVs. This approach can facilitate targeted screening with echocardiography to improve under-diagnosis of structural heart disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3