Clonal gametogenesis is triggered by intrinsic stimuli in the hybrid’s germ cells but is dependent on sex differentiation

Author:

Tichopád TomášORCID,Franěk Roman,Doležálková-Kaštánková Marie,Dedukh Dmitrij,Marta Anatolie,Halačka Karel,Steinbach Christoph,Janko KarelORCID,Pšenička Martin

Abstract

AbstractInterspecific hybridization may trigger the transition from sexual reproduction to asexuality, but mechanistic reasons for such a change in a hybrid’s reproduction are poorly understood. Gametogenesis of many asexual hybrids involves a stage of premeiotic endoreduplication (PMER), when gonial cells duplicate chromosomes and subsequent meiotic divisions involve bivalents between identical copies, leading to production of clonal gametes. Here, we investigated the triggers of PMER and whether its induction is linked to intrinsic stimuli within a hybrid’s gonial cells or whether it is regulated by the surrounding gonadal tissue.We investigated gametogenesis in the Cobitis taenia hybrid complex, which involves sexually reproducing species (Cobitis elongatoides and C. taenia) as well as their hybrids, where females reproduce clonally via PMER while males are sterile. We transplanted spermatogonial stem cells (SSCs) from C. elongatoides and triploid hybrid males into embryos of sexual species and of asexual hybrid females, respectively, and observed their development in an allospecific gonadal environment. Sexual SSCs underwent regular meiosis and produced normally reduced gametes when transplanted into clonal females. On the other hand, the hybrid’s SSCs lead to sterility when transplanted into sexual males, but maintained their ability to undergo asexual development (PMER) and production of clonal eggs, when transplanted into sexual females.This suggests that asexual gametogenesis is under complex control when somatic gonadal tissue indirectly affects the execution of asexual development by determining the sexual differentiation of stem cells and once such cells develop to female phenotypes, hybrid germ cells trigger the PMER from their intrinsic signals.Significance StatementAlthough sexual reproduction is a dominant trait among all eukaryotes, many taxa have evolved the ability to reproduce asexually. While asexuality appears to be linked to interspecific hybridization, it remains unknown how the coexistence of diverged genomes may initiate such a swap in reproduction. In our study, we transplanted germ cells between asexual hybrids and their parents. On one hand, the ability of clonal gametogenesis occurred exclusively in hybrid germ cells, suggesting that asexual development is directly triggered by the hybrid genomic constitution of the cell. On the other hand, clonality was observed only in cells transplanted into females, suggesting that the execution of clonal development is influenced by signals from the gonadal environment and regulated by somatic factors.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Naturally clonal vertebrates are an untapped resource in ecology and evolution research;Nat. Ecol. Evol,2019

2. Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida

3. Deletion mapping of genetic regions associated with apomixis in Hieracium

4. Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae)

5. C. Moritz , W. M. Brown , L. D. Densmore , J. W. Wright , D. Vyas , S. Donnellan , P. Baverstock , “Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae) “ in Evolution and Ecology of Unisexual Vertebrates (New York State Museum, Albany, New York, 1989), pp. 268–280.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3