Sorting Nexin 27 (SNX27): A Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Trafficking

Author:

McDermott Mark I.,Thelin William R.,Chen Yun,Lyons Patrick T.,Reilly Gabrielle,Gentzsch Martina,Lei Cai,Hong Wanjin,Jackson Stutts M.,Playford Martin P.,Bankaitis Vytas A.

Abstract

AbstractThe underlying defect in cystic fibrosis is mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel expressed at the apical surface of lung epithelia. In addition to its export and maintenance at the cell surface, CFTR regulation involves repeated cycles of transport through the endosomal trafficking system, including endocytosis and recycling. Many of the known disease mutations cause CFTR intracellular trafficking defects that result in failure of ion channel delivery to the apical plasma membrane. Corrective maneuvers directed at improving transport to the plasma membrane are thwarted by rapid internalization and degradation of the mutant CFTR proteins. The molecular mechanisms involved in these processes are not completely understood but may involve protein-protein interactions with the C-terminal type I PDZ-binding motif of CFTR. Using a proteomic approach, we identify sorting nexin 27 (SNX27) as a novel CFTR binding partner in human airway epithelial Calu-3 cells. SNX27 and CFTR interact directly, with the SNX27 PDZ domain being both necessary and sufficient for this interaction. SNX27 co-localizes with internalized CFTR at sub-apical endosomal sites in polarized Calu-3 cells, and either knockdown of the endogenous SNX27, or over-expression of a dominant-negative SNX27 mutant, resulted in significant decreases in cell surface CFTR levels. CFTR internalization was not affected by SNX27 knockdown, but defects were observed in the recycling arm of CFTR trafficking through the endosomal system. Furthermore, knockdown of SNX27 in Calu-3 cells resulted in significant decreases in CFTR protein levels, consistent with degradation of the internalized pool. These data identify SNX27 as a physiologically significant regulator of CFTR trafficking and homeostasis in epithelial cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3