Temporal contact patterns and the implications for predicting superspreaders and planning of targeted outbreak control

Author:

Pung RachaelORCID,Firth Josh AORCID,Russell TimothyORCID,Rogers Tim,Lee Vernon J,Kucharski Adam J

Abstract

AbstractEpidemic models often heavily simplify the dynamics of human-to-human contacts, but the resulting bias in outbreak dynamics – and hence requirements for control measures – remains unclear. Even if high resolution temporal contact data were routinely used for modelling, the role of this temporal network structure towards outbreak control is not well characterised. We address this by assessing dynamic networks across varied social settings and developing a novel metric to measure contact retention over time and to identify highly connected individuals. Using 11 networks from 5 settings studied over 3–10 days, we estimated that more than 80% of the individuals in most settings were highly connected for only short periods. This suggests a challenge to identify superspreaders, and more individuals would need to be targeted as part of outbreak interventions to achieve the same reduction in transmission as predicted from a static network. Taking into account repeated contacts over multiple days, we estimated simple resource planning models might overestimate the number of contacts made by an infector by 20%–70%. In workplaces and schools, contacts in the same department accounted for most of the retained contacts. Hence, outbreak control measures would be better off targeting specific sub-populations in these settings to reduce transmission. In contrast, no obvious type of contact dominated the retained contacts in hospitals, so reducing the risk of disease introduction is critical to avoid disrupting the interdependent work functions.SignificanceDirectly transmitted infectious diseases spread through social contacts that can change over time. Simplifying these contact patterns when predicting outbreaks with models may bias results, and in turn conclusions on the effectiveness of control measures. An ongoing challenge is therefore how to capture key properties of complex and dynamic networks while also ensuring analysis is transparent and interpretable. To address this challenge, we analysed 11 networks from 5 different settings and developed new metrics to capture crucial epidemiological features of these networks. We showed that there is an inherent difficulty in identifying individual ‘superspreaders’ reliably in most networks. In addition, the key types of individuals driving transmission vary across settings, thus requiring different outbreak control measures to reduce disease transmission or the risk of introduction. Simple models to mimic disease transmission in temporal networks may not capture the repeated contacts over the days, and hence could incorrectly estimate the resources required for outbreak control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3