Gene expression shifts in Emperor penguin adaptation to the extreme Antarctic environment

Author:

Paris Josephine R.ORCID,Fernandes Flávia A. NittaORCID,Pirri Federica,Greco SamueleORCID,Gerdol MarcoORCID,Pallavicini AlbertoORCID,Benoiste Marine,Cornec ClémentORCID,Zane LorenzoORCID,Haas BrianORCID,Bohec Céline LeORCID,Trucchi EmilianoORCID

Abstract

AbstractGene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and, supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only warm-blooded vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the firstde novotranscriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNAseq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to extreme Antarctic ecology. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3