Arousal as a universal embedding for spatiotemporal brain dynamics

Author:

Raut Ryan V.ORCID,Rosenthal Zachary P.,Wang Xiaodan,Miao Hanyang,Zhang Zhanqi,Lee Jin-Moo,Raichle Marcus E.,Bauer Adam Q.,Brunton Steven L.,Brunton Bingni W.ORCID,Kutz J. Nathan

Abstract

AbstractNeural activity in awake organisms shows widespread and spatiotemporally diverse correlations with behavioral and physiological measurements. We propose that this covariation reflects in part the dynamics of a unified, arousal-related process that regulates brain-wide physiology on the timescale of seconds. Taken together with theoretical foundations in dynamical systems, this interpretation leads us to a surprising prediction: that a single, scalar measurement of arousal (e.g., pupil diameter) should suffice to reconstruct the continuous evolution of multimodal, spatiotemporal measurements of large-scale brain physiology. To test this hypothesis, we perform multimodal, cortex-wide optical imaging and behavioral monitoring in awake mice. We demonstrate that spatiotemporal measurements of neuronal calcium, metabolism, and blood-oxygen can be accurately and parsimoniously modeled from a low-dimensional state-space reconstructed from the time history of pupil diameter. Extending this framework to behavioral and electrophysiological measurements from the Allen Brain Observatory, we demonstrate the ability to integrate diverse experimental data into a unified generative model via mappings from an intrinsic arousal manifold. Our results support the hypothesis that spontaneous, spatially structured fluctuations in brain-wide physiology—widely interpreted to reflect regionally-specific neural communication—are in large part reflections of an arousal-related process. This enriched view of arousal dynamics has broad implications for interpreting observations of brain, body, and behavior as measured across modalities, contexts, and scales.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3