DISRUPTION OF THE ENDOGENOUS INDOLE GLUCOSINOLATE PATHWAY IMPACTS THEARABIDOPSIS THALIANAROOT EXUDATION PROFILE AND RHIZOBACTERIAL COMMUNITY

Author:

Acuña DanielORCID,Bletz Molly C,Sasse Joelle,Micallef Shirley A,Kosina Suzanne,Bowen Benjamin P,Northen Trent R,Colón-Carmona Adán

Abstract

AbstractRoot exudates are composed of primary and secondary metabolites known to modulate the rhizosphere microbiota. Glucosinolates are defense compounds present in the Brassicaceae family capable of deterring pathogens, herbivores and biotic stressors in the phyllosphere. In addition, traces of glucosinolates and their hydrolyzed byproducts have been found in the soil, suggesting that these secondary metabolites could play a role in the modulation and establishment of the rhizosphere microbial community associated with this family. We usedArabidopsis thalianamutant lines with disruptions in the indole glucosinolate pathway, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S rRNA amplicon sequencing to evaluate how disrupting this pathway affects the root exudate profile ofArabidopsis thaliana, and in turn, impacts the rhizosphere microbial community. Chemical analysis of the root exudates from the wild-type Columbia (Col-0), a mutant plant line overexpressing the MYB transcription factorATR1(atr1D)which increases glucosinolate production, and the loss-of-functioncyp79B2cyp79B3double mutant line with low levels of glucosinolates confirmed that alterations to the indole glucosinolate biosynthetic pathway shifts the root exudate profile of the plant. We observed changes in the relative abundance of exuded metabolites. Moreover, 16S rRNA amplicon sequencing results provided evidence that the rhizobacterial communities associated with the plant lines used were directly impacted in diversity and community composition. This work provides further information on the involvement of secondary metabolites and their role in modulating the rhizobacterial community. Root metabolites dictate the presence of different bacterial species, including plant growth-promoting rhizobacteria (PGPR). Our results suggest that genetic alterations in the indole glucosinolate pathway cause disruptions beyond the endogenous levels of the plant, significantly changing the abundance and presence of different metabolites in the root exudates of the plants as well as the microbial rhizosphere community.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3