Diurnal rhythm causes metabolic crises in the cyanobacterial mutants of c-di-AMP signalling cascade

Author:

Haffner MichaelORCID,Mantovani OliverORCID,Spät PhilippORCID,Maček BorisORCID,Hagemann MartinORCID,Forchhammer KarlORCID,Selim Khaled A.ORCID

Abstract

AbstractIn nature, the photoautotrophic lifestyle of cyanobacteria has to cope with the successive diurnal changes in light supply. Light supply throughout the day enables photosynthesis and glycogen biosynthesis, while night phases require the switch to a heterotrophic-like lifestyle relying on glycogen catabolism. We previously highlighted a unique function of the carbon control protein, SbtB, and its effector molecule c-di-AMP, for the nighttime survival of cyanobacteria through the regulation of glycogen anabolism. However, the extent to which c-di-AMP and SbtB impact the cellular metabolism for day-night survivability remained elusive. To gain better understanding of cellular processes regulated by SbtB or c-di-AMP, we compared the metabolomic and proteomic landscapes of ΔsbtBand the c-di-AMP-free (ΔdacA) mutants of the model strainSynechocystissp. PCC 6803. While our results indicate that the cellular role of SbtB is restricted to carbon/glycogen metabolism, the diurnal lethality of ΔdacAseems to be a sum of dysregulation of multiple metabolic processes. These processes include photosynthesis and redox regulation, which lead to elevated levels of intracellular ROS and glutathione. Further, we show an impact of c-di-AMP on central carbon as well as on nitrogen metabolism. Effects on nitrogen metabolism are linked to reduced levels of the global nitrogen transcription regulator NtcA and highlighted by an imbalance of the glutamine to glutamate ratio as well as reduced metabolite levels of the arginine pathway. We further identified the HCO3-uptake systems, BicA and BCT1 as novel SbtB targets, in agreement with its broader role in regulating carbon homeostasis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3