3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights into MFN-2 Mediated Changes

Author:

Scudese Estevão,Vue Zer,Katti Prassana,Marshall Andrea,Vang Larry,López Edgar Garza,Neikirk Kit,Stephens Dominique,Hall Duane D.,Rostami Rahmati,Shao Jian-qiang,Mungai Margaret,AshShareef Salma T.,Hicsasmaz Innes,Manus Sasha,Wanjalla Celestine,Whiteside Aaron,Williams Clintoria,Damo Steven M.,Gaddy Jennifer A.,Kirabo Annet,Glancy Brian,Dantas Estélio Henrique Martin,Kinder André,Scartoni Fabiana,Baffi Matheus,McReynolds Melanie R.,Phillips Mark A.ORCID,Cooper Anthonya,Murray Sandra A.,Exil Vernat,Mobley Bret C.,Hinton AntentorORCID

Abstract

AbstractSarcopenia is an age-related loss of skeletal muscle, characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although mitochondrial aging is associated with decreased mitochondrial capacity, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging still requires further elucidation. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern these changes remain unclear. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorousin vitroandin vivoexercise regimen during aging. We found that mitochondria became less complex with age. Specifically, mitochondria lost surface area, complexity, and perimeter, indicating age-related declines in ATP synthesis and interaction capacity. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), which we show is required for mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved with Marf, the MFN2 ortholog inDrosophila, as Marf knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3