An agent based model (ABM) to reproduce the boolean logic behaviour of neuronal self organized communities through pulse delay modulation and generation of logic gates

Author:

Irastorza-Valera Luis,Benitez José María,Montáns Francisco J.,Saucedo-Mora Luis

Abstract

AbstractThe human brain is arguably the most complex “machine” to ever exist. Its detailed functioning is yet to be fully understood, let alone modeled. Neurological processes have logical signal-processing aspects and biophysical aspects, and both affect the brain structure, functioning and adaptation. Mathematical approaches based on both information and graph theory have been extensively used in an attempt to approximate its biological functioning, along with Artificial Intelligence approaches inspired by its logical functioning. In this article, we present an approach to model some aspects of the brain learning and signal processing, mimicking the metastability and backpropagation found in the real brain while also accounting for neuroplasticity. Several simulations are carried out with this model, to demonstrate how dynamic neuroplasticity, neural inhibition and neurons migration can remodel the brain logical connectivity to syncronize signal processing and obtain target latencies. This work demonstrates the importance of dynamic logical and biophysical remodelling in brain plasticity.

Publisher

Cold Spring Harbor Laboratory

Reference110 articles.

1. Models of communication and control for brain networks: distinctions, convergence, and future outlook

2. Brain mapping at high resolutions: Challenges and opportunities

3. An analysis of clinical values of MRI, CT and X-ray in differentiating benign and malignant bone metastases;American Journal of Translational Research,2021

4. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3