The chikungunya virus E1 glycoprotein fusion loop and hinge alter glycoprotein dynamics leading to cell and host specific changes in infectivity

Author:

Thannickal Sara A.,Battini Leandro,Spector Sophie N.,Noval Maria G.,Álvarez Diego E.ORCID,Stapleford Kenneth A.ORCID

Abstract

AbstractAlphaviruses infect both mammals and insects, yet the distinct mechanisms that alphaviruses use to infect different hosts are not well defined. In this study, we characterize CHIKV E1 variants in the fusion loop (E1-M88L) and hinge region (E1-N20Y)in vitroandin vivoto understand how these regions of the E1 glycoprotein contribute to host-specific infection. Through cell culture assays, we found that CHIKV E1-N20Y enhanced infectivity in mosquito cells while the CHIKV E1-M88L variant enhanced virus binding and infectivity in both BHK-21 and C6/36 cells, and led to changes in the virus cholesterol-dependence in BHK-21 cells. Given thesein vitroresults and that residue E1-M88L is in a defined Mxra8 interacting domain, we hypothesized that this residue may be important for receptor usage. However, while the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, it was attenuatedin vitroin mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type dependent manner to alter entry. Finally, using molecular dynamics to understand how potential changes in the E1 glycoprotein may impact the CHIKV glycoprotein E1-E2 complex, we found that E1-M88L and other E1 domain II variants lead to changes in both E1 and E2 dynamics. Taken together, these studies show that key residues in the CHIKV E1 fusion loop and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.ImportanceArthropod-borne viruses (arboviruses) are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus class II glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, to address these gaps in our knowledge, it is critical to dissect how distinct glycoprotein domains functionin vitroandin vivo. Here, we show that changes in the CHIKV E1 fusion loop and hinge contribute to host-specific entry and E1-E2 dynamics, furthering our knowledge of how alphaviruses infect mammals and insects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3