Disruption of redox balance in glutaminolytic triple negative breast cancer by inhibition of glutamate export and glutaminase

Author:

Choi HoonORCID,Gupta Mamta,Hensley Christopher,Lee Hsiaoju,Lu Yu-Ting,Pantel Austin,Mankoff David,Zhou RongORCID

Abstract

AbstractIn triple-negative breast cancer (TNBC) that relies on catabolism of amino acid glutamine, glutaminase (GLS) converts glutamine to glutamate, which facilitates glutathione synthesis by mediating the enrichment of intracellular cystine via xCT antiporter activity. To overcome chemo resistant TNBC, we have tested a strategy of disrupting cellular redox balance by inhibition of GLS and xCT by CB839 and Erastin, respectively. Key findings of our study include: 1. Dual metabolic inhibition (CB839+Erastin) led to significant increases of cellular superoxide level in both parent and chemo resistant TNBC cells, but superoxide level was distinctly lower in resistant cells. 2. Dual metabolic inhibition combined with doxorubicin or cisplatin induced significant apoptosis in TNBC cells and is associated with high degrees of GSH depletion.In vivo, dual metabolic inhibition plus cisplatin led to significant growth delay of chemo resistant human TNBC xenografts. 3. Ferroptosis is induced by doxorubicin (DOX) but not by cisplatin or paclitaxel. Addition of dual metabolic inhibition to DOX chemotherapy significantly enhanced ferroptotic cell death. 4. Significant changes in cellular metabolites concentration preceded transcriptome changes revealed by single cell RNA sequencing, underscoring the potential of capturing early changes in metabolites as pharmacodynamic markers of metabolic inhibitors. Here we demonstrated that 4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) PET detected xCT blockade by Erastin or its analog in mice bearing human TNBC xenografts. In summary, our study provides compelling evidence for the therapeutic benefit and feasibility of non-invasive monitoring of dual metabolic blockade as a translational strategy to sensitize chemo resistant TNBC to cytotoxic chemotherapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3