Integration of metataxonomic datasets into microbial association networks highlights shared bacterial community dynamics in fermented vegetables

Author:

Junker RomaneORCID,Valence Florence,Mistou Michel-Yves,Chaillou Stéphane,Chiapello HélèneORCID

Abstract

ABSTRACTThe management of food fermentation is still largely based on empirical knowledge, as the dynamics of microbial communities and the underlying metabolic networks that produce safe and nutritious products remain beyond our understanding. Although these closed ecosystems contain relatively few taxa, they have not yet been thoroughly characterized with respect to how their microbial communities interact and dynamically evolve. However, with the increased availability of metataxonomic datasets on different fermented vegetables, it is now possible to gain a comprehensive understanding of the microbial relationships that structure plant fermentation.In this study, we present a bioinformatics approach that integrates public metataxonomic 16S datasets targeting fermented vegetables. Specifically, we developed a method for exploring, comparing, and combining public 16S datasets in order to perform meta-analyses of microbiota. The workflow includes steps for searching and selecting public time-series datasets and constructing association networks of amplicon sequence variants (ASVs) based on co-abundance metrics. Networks for individual datasets are then integrated into a core network of significant associations. Microbial communities are identified based on the comparison and clustering of ASV networks using the “stochastic block model” method. When we applied this method to 10 public datasets (including a total of 931 samples), we found that it was able to shed light on the dynamics of vegetable fermentation by characterizing the processes of community succession among different bacterial assemblages.IMPORTANCEWithin the growing body of research on the bacterial communities involved in the fermentation of vegetables, there is particular interest in discovering the species or consortia that drive different fermentation steps. This integrative analysis demonstrates that the reuse and integration of public microbiome datasets can provide new insights into a little-known biotope. Our most important finding is the recurrent but transient appearance, at the beginning of vegetable fermentation, of ASVs belonging toEnterobacteralesand their associations with ASVs belonging toLactobacillales. These findings could be applied in the design of new fermented products.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3