Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation Via Hexosamine Biosynthetic Pathway

Author:

Grilo Luís F.ORCID,Zimmerman Kip D.,Puppala SobhaORCID,Chan Jeannie,Huber Hillary F.,Li Ge,Jadhav Avinash Y. L.,Wang Benlian,Li Cun,Clarke Geoffrey D.,Register Thomas C.ORCID,Oliveira Paulo J.ORCID,Nathanielsz Peter W.,Olivier Michael,Pereira Susana P.ORCID,Cox Laura A.ORCID

Abstract

AbstractAge is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans.The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes.We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ∼30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width.Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3