Improving the reliability of fMRI-based predictions of intelligence via semi-blind machine learning

Author:

Lohmann Gabriele,Heczko Samuel,Mahler Lucas,Wang Qi,Steiglechner Julius,Kumar Vinod J.,Roost Michelle,Jost Jürgen,Scheffler Klaus

Abstract

AbstractPredicting neuromarkers for cognitive abilities using fMRI has been a major focus of research in the past few years. However, it has recently been reported that many thousands of participants are required to obtain reproducible results (Marek et al (2022)). This appears to be a major impediment to obtaining neuromarkers from fMRI because large sample sizes are typically not available in neuroimaging studies. Here we show that the out-of-sample prediction accuracy can be dramatically improved by supplementing fMRI with readily available non-imaging information so that reliable predictive modeling becomes feasible even for small sample sizes. Specifically, we introduce a novel machine learning method that predicts intelligence from resting-state fMRI data, leveraging educational level as supplementary information. We refer to our approach as “semi-blind machine learning (SML)” because it operates under the assumption that supplementary information, such as educational level, is available for subjects in both the training and test sets. This setup closely mirrors real-world scenarios, especially in clinical contexts, where patient background information typically exists and can be utilized to boost prediction accuracy. However, guarding against bias is crucial. Subjects should not be categorized as more intelligent simply based on their higher education levels. Therefore, our approach contains a component explicitly designed for bias control. We have applied our method to three different data collections and observed marked improvements in prediction accuracies across a wide range of sample sizes. We anticipate that semi-blind machine learning provides a promising approach to fMRI-based predictive modelling with the potential for a wide range of future applications.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3