Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: a two-center study

Author:

Liu XinyangORCID,Jiang Zhifan,Roth Holger R.,Anwar Syed Muhammad,Bonner Erin R.,Mahtabfar Aria,Packer Roger J.,Kazerooni Anahita Fathi,Bornhorst Miriam,Linguraru Marius George

Abstract

ABSTRACTBackgroundDiffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS).MethodsWe acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, T2 FLAIR) and manual segmentations from two centers of 53 (internal cohort) and 16 (external cohort) DMG patients. We pretrained a deep learning model on a public adult brain tumor dataset, and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 1-year survival from diagnosis. One model used only diagnostic tumor features and the other used both diagnostic and post-RT features.ResultsFor segmentation, Dice score (mean [median]±SD) was 0.91 (0.94)±0.12 and 0.74 (0.83)±0.32 for TC, and 0.88 (0.91)±0.07 and 0.86 (0.89)±0.06 for WT for internal and external cohorts, respectively. For OS prediction, accuracy was 77% and 81% at time of diagnosis, and 85% and 78% post-RT for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS.ConclusionsMachine learning analysis of MRI radiomics has potential to accurately and non-invasively predict which pediatric patients with DMG will survive less than one year from the time of diagnosis to provide patient stratification and guide therapy.KEY POINTSAutomatic machine learning approach accurately predicts DMG survival from MRIHomogeneous whole tumor intensity in baseline T2 FLAIR indicates worse prognosisLarger post-RT tumor core/whole tumor volume ratio indicates worse prognosisIMPORTANCE OF STUDYStudies of pediatric DMG prognostication have relied on manual tumor segmentation from MRI, which is impractical and variable in busy clinics. We present an automatic imaging tool based on machine learning to segment subregions of DMG and select radiomic features that predict overall survival. We trained and evaluated our tool on multisequence, two-center MRIs acquired at the time of diagnosis and post-radiation therapy. Our methods achieved 77-85% accuracy for DMG survival prediction. The data-driven study identified that homogeneous whole tumor intensity in baseline T2 FLAIR and larger post-therapy tumor core/whole tumor volume ratio indicates worse prognosis. Our tool can increase the utility of MRI for predicting clinical outcome, stratifying patients into risk-groups for improved therapeutic management, monitoring therapeutic response with greater accuracy, and creating opportunities to adapt treatment. This automated tool has potential to be easily incorporated in multi-institutional clinical trials to provide consistent and repeatable tumor evaluation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3