Evolution of a small phage protein overcomes antiphage defense inEnterococcus faecalis

Author:

Johnson Cydney N.,Bullen Nathan P.,Andersen Shelby E.,Arya Garima,Marotta Sonia R.,Whitney John C.,Duerkop Breck A.ORCID

Abstract

ABSTRACTThe prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of new antibiotics needed to combat these infections remains stagnant. MDR enterococci, which are a common cause of hospital-acquired infections, are emerging as one of the major contributors to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which entails the use of lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of phage resistance and the mechanisms underlying this resistance are unknown. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from vancomycin-resistantEnterococcus faecalisinvolved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) and we show that this enzyme is sufficient to restrict the replication of the lytic phage inE. faecalis. We further find that phages can evolve to overcome restriction by acquiring a missense mutation in a novel TIV-RE inhibitor protein encoded by many enterococcal phages. We show that this inhibitor, which we have namedanti-restriction-factor A (arfA), directly binds to and inactivates diverse TIV-REs. Overall, our findings significantly advance our understanding of phage defense in drug-resistantE. faecalisand provide mechanistic insight into how phages can evolve to overcome antiphage defense systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3