Single Nucleus RNA Sequencing of Remnant Kidney Biopsies and Urine Cell RNA Sequencing Reveal Cell Specific Markers of Covid-19 Acute Kidney Injury

Author:

Ghag ReetikaORCID,Kaushal MadhurimaORCID,Nwanne GeraldORCID,Knoten Amanda,Kiryluk KrzysztofORCID,Rosenberg Avi,Menez Steve,Bagnasco Serena M.,Sperati C John.,Atta Mohamed G.,Gaut Joseph P.ORCID,Williams James C.,El-Achkar Tarek M.,Arend Lois J.,Parikh Chirag R.,Jain SanjayORCID

Abstract

AbstractAcute kidney injury (AKI) in COVID-19 patients is associated with high mortality and morbidity. Critically ill COVID-19 patients are at twice the risk of in-hospital mortality compared to non-COVID AKI patients. We know little about the cell-specific mechanism in the kidney that contributes to worse clinical outcomes in these patients. New generation single cell technologies have the potential to provide insights into physiological states and molecular mechanisms in COVID-AKI. One of the key limitations is that these patients are severely ill posing significant risks in procuring additional biopsy tissue. We recently generated single nucleus RNA-sequencing data using COVID-AKI patient biopsy tissue as part of the human kidney atlas. Here we describe this approach in detail and report deeper comparative analysis of snRNAseq of 4 COVID-AKI, 4 reference, and 6 non-COVID-AKI biopsies. We also generated and analyzed urine transcriptomics data to find overlapping COVID-AKI-enriched genes and their corresponding cell types in the kidney from snRNA-seq data. We identified all major and minor cell types and states by using by using less than a few cubic millimeters of leftover tissue after pathological workup in our approach. Differential expression analysis of COVID-AKI biopsies showed pathways enriched in viral response, WNT signaling, kidney development, and cytokines in several nephron epithelial cells. COVID-AKI profiles showed a much higher proportion of altered TAL cells than non-COVID AKI and the reference samples. In addition to kidney injury and fibrosis markers indicating robust remodeling we found that, 17 genes overlap between urine cell COVID-AKI transcriptome and the snRNA-seq data from COVID-AKI biopsies. A key feature was that several of the distal nephron and collecting system cell types express these markers. Some of these markers have been previously observed in COVID-19 studies suggesting a common mechanism of injury and potentially the kidney as one of the sources of soluble factors with a potential role in disease progression.Translational StatementThe manuscript describes innovation, application and discovery that impact clinical care in kidney disease. First, the approach to maximize use of remnant frozen clinical biopsies to inform on clinically relevant molecular features can augment existing pathological workflow for any frozen tissue without much change in the protocol. Second, this approach is transformational in medical crises such as pandemics where mechanistic insights are needed to evaluate organ injury, targets for drug therapy and diagnostic and prognostic markers. Third, the cell type specific and soluble markers identified and validated can be used for diagnoses or prognoses in AKI due to different etiologies and in multiorgan injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3