Immunosuppressive tumor microenvironment of osteosarcoma

Author:

Taylor Aaron MichaelORCID,Shing Ng Patrick KwokORCID,Harder Jeffrey M.ORCID,Kumar Parveen,Dzis Alissa M.ORCID,Jillette Nathaniel L.ORCID,Goodspeed AndrewORCID,Bodlak Avery,Wu Qian,Isakoff Michael S.,George JoshyORCID,Grassmann Jessica D.S.ORCID,Luo Diane,Flynn William F.ORCID,Courtois Elise T.ORCID,Robson PaulORCID,Hayashi MasanoriORCID,Paolillo Alini Trujillo,de Toledo Silvia Regina CaminadaORCID,Balarezo Fabiola Sara,Lindsay Adam D.,Hoang Bang,Lau Ching C.ORCID

Abstract

AbstractBackgroundOsteosarcoma (OS) is the most common malignant bone tumor in children. OS is characterized by a high degree of genomic instability, resulting in copy-number alterations and genomic rearrangements with no disease-defining recurrent mutations. Given the diverse genomic landscape of OS and the difficulty of identifying druggable therapeutic targets, use of immunotherapy techniques appears lucrative. However, clinical trials based on molecular characterization have failed to find new effective therapies, and outcomes have not improved over the last 40 years.Materials/MethodsWe performed single-cell RNA sequencing (scRNA-seq) using the 10x Genomics Chromium platform on six fresh tumor biopsy samples from pediatric OS patients. Raw data was processed using 10x CellRanger to produce transcript read counts for each cell. After filtering low-quality cells and doublet removal, counts were normalized using Seurat, and cells were integrated across samples with Harmony. Data was combined with a previously-published OS scRNA-seq cohort of six samples (GSE162454). Two additional OS samples were profiled using 10x Genomics Visium spatial transcriptomics for validation of discovered subtypes and to add spatial context.ResultsClustering identified 16 major cell types based on expression of canonical cell markers. Several immunosuppressive cell types were identified via subclustering of major cell types, including neutrophil myeloid-derived suppressor cells (MDSCs), regulatory and exhausted T-cells, and LAMP3+ dendritic cells. Markers for the cell types found in OS were identified for further validation using imaging techniques, including Visium spatial transcriptomics. We performed deconvolution using the scRNA-seq cell identities to examine colocalization of discovered cell types. Overall, the discovered clusters were common between patients, showing consistent cell type proportions.However, we found patient-specific differences in the frequency of some cell types, with one sample showing a higher proportion of T-cells along with increased presence of colocalized IFN-stimulated macrophages, and the other with a greater presence of neutrophils/MDSCs.ConclusionsUsing single-cell transcriptomics, we were able to discover the presence of multiple immunosuppressive cell subtypes of neutrophils, T-cells, and dendritic cells. Additionally, spatial transcriptomics revealed multiple similar clusters between samples, and common colocalization of the discovered cell types within those clusters. However, differences in T-cell presence and interferon induction may be indicative of patient-specific immunogenicity in osteosarcoma tumors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3