Abstract
Experiments have shown that during the initial stage of Zebrafish morphogenesis a synchronous to asynchronous transition (SAT) occurs, as the cells divide extremely rapidly. In the synchronous phase, the cells divide in unison unlike in the asynchronous phase. Despite the wide spread observation of SAT in experiments, a theory to calculate the critical number of cell cycles,n*, at which asynchronous growth emerges does not exist. Here, using a model for the cell cycle, with the assumption that cell division times are Gaussian distributed with broadening, we predictn*and the time at which the SAT occurs. The theoretical results are in excellent agreement with experiments. The theory, supplemented by agent based simulations, establish that the SAT emerges as a consequence of biomechanical feedback on cell division. The emergence of asynchronous phase is due to linearly increasing fluctuations in the cell cycle times with each round of cell division. We also make several testable predictions, which would further shed light on the role of biomechanical feedback on the growth of multicellular systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Collective effects of cell cleavage dynamics;Frontiers in Cell and Developmental Biology;2024-03-15