Algorithm for automatic detection of insulin granule exocytosis in human pancreatic β-cells

Author:

Makam Aishwarya A,Dubey Abhimanyu,Maharana Shovamayee,Gandasi Nikhil R.ORCID

Abstract

ABSTRACTImage processing and analysis are two significant areas that are highly important for interpreting enormous amounts of data obtained from microscopy-based experiments. Several image analysis tools exist for the general detection of fundamental cellular processes, but tools to detect highly distinct cellular functions are few. One such process is exocytosis, which involves the release of vesicular content out of the cell. The size of the vesicles and the inherent differences in the imaging parameters demand specific analysis platforms for detecting exocytosis. In this direction, we have developed an image-processing algorithm based on Lagrangian particle tracking. The tool was developed to ensure that there is efficient detection of punctate structures initially developed by mathematical equations, fluorescent beads and cellular images with fluorescently labelled vesicles that can exocytose. The detection of these punctate structures using the tool was compared with other existing tools, such as find maxima in ImageJ and manual detection. The tool not only met the precision of existing solutions but also expedited the process, resulting in a more time-efficient solution. During exocytosis, there is a sudden increase in the intensity of the fluorescently labelled vesicles that look like punctate structures. The algorithm precisely locates the vesicles’ coordinates and quantifies the variations in their respective intensities. Subsequently, the algorithm processes and retrieves pertinent information from large datasets surpassing that of conventional methods under our evaluation, affirming its efficacy. Furthermore, the tool exhibits adaptability for the image analysis of diverse cellular processes, requiring only minimal modifications to ensure accurate detection of exocytosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3