Improving influenza A vaccine strain selection through deep evolutionary models

Author:

Shi Wenxian,Wohlwend Jeremy,Wu Menghua,Barzilay Regina

Abstract

AbstractEven though vaccines have the potential to significantly alleviate the disease burden of epidemics such as the seasonal flu, current influenza vaccines offer limited protection. According to the Centers for Disease Control and Prevention (CDC), vaccine effectiveness has hovered below 50% for the past decade. Identifying the optimal strains to use in a vaccine is central to increasing its efficacy. However, this task is challenging due to the antigenic drift that occurs during the flu season. In this paper, we propose to select vaccines based on their escapability score, a metric that quantifies the antigenic similarity of vaccine strains with future dominant strains and demonstrates a strong correlation with clinical vaccine effectiveness. We introduce a deep learning-based approach that predicts both the antigenic properties of vaccine strains and the dominance of future circulating viruses, enabling efficient virtual screening of a large number of vaccine compositions. We utilized historical antigenic analysis data from the World Health Organization (WHO) to demonstrate that our model selects vaccine strains that reliably improve over the recommended ones.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3