The mitochondrial calcium uniporter is necessary for synaptic plasticity and proper mitochondrial morphology and distribution in the distal dendrites of CA2 neurons

Author:

Pannoni Katy E.ORCID,Fischer Quentin S.ORCID,Tarannum RenesaORCID,Cawley Mikel L.ORCID,Alsalman Mayd M.,Acosta Nicole,Ezigbo Chisom,Gil Daniela V.,Campbell Logan A.ORCID,Farris ShannonORCID

Abstract

ABSTRACTMitochondria are dynamic organelles that are morphologically and functionally diverse across different cell types and subcellular compartments in order to meet unique energy demands. In neurons, mitochondria are critical to support synapses and synaptic plasticity. However, the mechanisms regulating mitochondria in synaptic plasticity are largely unknown. The mitochondrial calcium uniporter (MCU) regulates calcium entry into the mitochondria, which in turn regulates the bioenergetics and distribution of mitochondria to active synapses. Evidence suggests that calcium influx via MCU couples neuronal activity to mitochondrial metabolism and ATP production, which would allow neurons to rapidly adapt to changing energy demands. Intriguingly, MCU is uniquely enriched in CA2 distal dendrites relative to neighboring CA1 or CA3 distal dendrites, suggesting mitochondria there are molecularly distinct. However, the functional significance of this enrichment is not clear. Synapses onto CA2 distal dendrites, unlike synapses onto CA2 proximal dendrites, readily undergo long-term potentiation (LTP), but the mechanisms underlying the different plasticity profiles are unknown. Therefore, we investigated the role of MCU in regulating dendritic mitochondria and synaptic plasticity in CA2 distal dendrites. Using a CA2-specific MCU knockout (cKO) mouse, we found that MCU is required for LTP at CA2 distal dendrite synapses. Loss of LTP correlated with a trend for decreased spine density in CA2 distal dendrites of cKO mice compared to control (CTL) mice, which was predominantly seen in immature spines Moreover, mitochondria were significantly smaller and more numerous across all dendritic layers of CA2 in cKO mice compared to CTL mice, suggesting an overall increase in mitochondrial fragmentation. Fragmented mitochondria might have functional changes, such as altered ATP production, that might explain a deficit in synaptic plasticity. Collectively, our data reveal that MCU regulates layer-specific forms of plasticity in CA2 dendrites, potentially by maintaining proper mitochondria morphology and distribution within dendrites. Differences in MCU expression across different cell types and circuits might be a general mechanism to tune the sensitivity of mitochondria to cytoplasmic calcium levels to power synaptic plasticity.MAIN TAKE HOME POINTSThe mitochondrial calcium uniporter regulates plasticity selectively at synapses in CA2 distal dendrites.The MCU-cKO induced LTP deficit at synapses in CA2 distal dendrites correlates with a trending reduction in spine density.Loss of MCU in CA2 results in ultrastructural changes in dendritic mitochondria that suggest an increase in mitochondrial fragmentation. These ultrastructural changes could result in functional consequences, such as decreased ATP production, that could underlie the plasticity deficit.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3