Pyruvate Oxidation Sustains B Cell Antigen-Specific Activation to Exacerbate MASH

Author:

Barrow Fanta,Wang Haiguang,Fredrickson Gavin,Florczak Kira,Ciske Erin,Khanal Shalil,Parthiban Preethy,Nguyen Huy,Rios Enrique,Kostallari Enis,Revelo Xavier S.ORCID

Abstract

ABSTRACTB cells play a crucial role in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH), a severe form of steatotic liver disease that if persistent can lead to cirrhosis, liver failure, and cancer. Chronic inflammation and fibrosis are key features of MASH that determine disease progression and outcomes. Recent advances have revealed that pathogenic B cell-derived cytokines and antibodies promote the development of MASH. However, the mechanisms through which B cells promote fibrosis and the metabolic adaptations underlying their pathogenic responses remain unclear. Here, we report that a subset of mature B cells with heightened cytokine responses accumulate in the liver and promote inflammation in MASH. To meet the increased energetic demand of effector responses, B cells increase their ATP production via oxidative phosphorylation (OXPHOS) fueled by pyruvate oxidation in a B cell receptor (BCR)-specific manner. Blocking pyruvate oxidation completely abrogated the inflammatory capacity of MASH B cells. Accordingly, the restriction of the BCR led to MASH attenuation, including reductions in steatosis, hepatic inflammation, and fibrosis. Mechanistically, BCR restriction decreased B cell maturation, activation, and effector responses in the liver, accompanied by decreased T cell- and macrophage-mediated inflammation. Notably, attenuated liver fibrosis in BCR-restricted mice was associated with lower IgG production and decreased expression of Fc-gamma receptors on hepatic stellate cells. Together, these findings indicate a key role for B cell antigen-specific responses in promoting steatosis, inflammation, and fibrosis during MASH.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3