AvrSr27 is a zinc-bound effector with a modular structure important for immune recognition

Author:

Outram Megan A.ORCID,Chen JianORCID,Broderick Sean,Li Zhao,Aditya Shouvik,Tasneem NurenORCID,Arndell Taj,Blundell Cheryl,Ericsson Daniel J.ORCID,Figueroa MelaniaORCID,Sperschneider JanaORCID,Dodds Peter N.ORCID,Williams Simon J.ORCID

Abstract

AbstractStem rust, caused by the fungal pathogenPuccinia graminis f. sp.tritici(Pgt) is a major threat for wheat production and global food security. Central to the success ofPgtis the secretion of proteinaceous effectors that promote infection and colonisation, while immunity in wheat is driven by receptor-mediated recognition of these effectors resulting in pathogen avirulence. Here, we report the crystal structure of the cysteine-rich effector AvrSr27, the third experimentally derived structure of aPgteffector. The AvrSr27 structure reveals a novel β-strand rich modular fold consisting of two structurally similar domains and confirms the poor prediction we obtained from the AlphaFold2-derived model. The highly prevalent cysteine residues within the protein facilitate the co-ordination of 4 zinc molecules. Utilising the structure, we show that the N-terminal domain of AvrSr27 is sufficient for immune recognition and interaction by Sr27. The 7-cys motif sequence in each AvrSr27 domain, which facilitates zinc binding, was also found in two haustorially-expressed, structurally homologousPgtproteins. Remarkably, despite relatively low sequence identity, we show that these proteins can associate with Sr27 and trigger cell death in heterologous systems and wheat protoplasts, albeit weaker than AvrSr27. Collectively, our findings have important implications for the field embarking on bespoke engineering of immunity receptors as solutions to plant disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3