Biocompatibility characterisation of CMOS-based Lab-on-Chip electrochemical sensors for in vitro cancer cell culture applications

Author:

Beykou MelinaORCID,Bousgouni Vicky,Moser NicolasORCID,Georgiou PantelisORCID,Bakal ChrisORCID

Abstract

AbstractLab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3