Structural control of fibrin bioactivity by mechanical deformation

Author:

Kumar Sachin,Wang YujenORCID,Rausch Manuel K.ORCID,Parekh Sapun H.ORCID

Abstract

AbstractFibrin is a fibrous protein network that entraps blood cells and platelets to form blood clots following vascular injury. As a biomaterial, fibrin acts a biochemical scaffold as well as a viscoelastic patch that resists mechanical insults. The biomechanics and biochemistry of fibrin have been well characterized independently, showing that fibrin is a hierarchical material with numerous binding partners. However, comparatively little is known about how fibrin biomechanics and biochemistry are coupled: how does fibrin deformation influence its biochemistry at the molecular level? In this study, we show how mechanically-induced molecular structural changes in fibrin affect fibrin biochemistry and fibrin-platelet interaction. We found that tensile deformation of fibrin lead to molecular structural transitions of α-helices to β-sheets, which reduced binding of tissue plasminogen activator (tPA), an enzyme that initiates fibrinolysis, at the network and single fiber level. Moreover, binding of tPA and Thioflavin T (ThT), a commonly used β-sheet marker, was primarily mutually exclusive such that tPA bound to native (helical) fibrin whereas ThT bound to strained fibrin. Finally, we demonstrate that conformational changes in fibrin suppressed the biological activity of platelets on mechanically strained fibrin due to attenuated αIIbβ3 integrin binding. Our work shows that mechanical strain regulates fibrin molecular structure and fibrin biological activity in an elegant mechano-chemical feedback loop, which likely influences fibrinolysis and wound healing kinetics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetic hydrogels as blood clot mimicking wound healing materials;Progress in Biomedical Engineering;2021-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3