Predicting Residues Involved in Anti-DNA Autoantibodies with Limited Neural Networks

Author:

St.Clair Rachel,Teti Michael,Pavlovic Mirjana,Hahn William,Barenholtz Elan

Abstract

AbstractComputer-aided rational vaccine design (RVD) and synthetic pharmacology are rapidly developing fields that leverage existing datasets for developing compounds of interest. Computational proteomics utilizes algorithms and models to probe proteins for functional prediction. A potentially strong target for such a computational approach is autoimmune antibodies which are the result of broken tolerance in the immune system where it cannot distinguish “self” from “non-self” resulting in attack of its own structures (proteins and DNA, mainly). The information on structure, function and pathogenicity of autoantibodies may assist in engineering RVD against autoimmune diseases. Current computational approaches exploit large datasets curated with extensive domain knowledge, most of which include the need for many computational resources and have been applied indirectly to problems of interest for DNA, RNA, and monomer protein binding. Here, we present a novel method for discovering potential binding sites. We employed long short-term memory (LSTM) models trained on FASTA primary sequences directly to predict protein binding in DNA-binding hydrolytic antibodies (abzymes). We also employed CNN models applied to the same dataset. While the CNN model outperformed the LSTM on the primary task of binding prediction, analysis of internal model representations of both models showed that the LSTM models highlighted sub-sequences that were more strongly correlated with sites known to be involved in binding. These results demonstrate that analysis of internal processes of recurrent neural network models may serve as a powerful tool for primary sequence analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3