Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes

Author:

Cooper Blake L.,Salameh Shatha,Posnack Nikki GillumORCID

Abstract

ABSTRACTBackgroundBisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated – including bisphenol S (BPS) and bisphenol F (BPF) – without a comprehensive understanding of their toxicological profile.ObjectivePrevious studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM).MethodsCardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM).ResultsCardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2>BPA>BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist.DiscussionCollectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the describedin vitrofindings should be validated using a more complexex vivoand/orin vivomodel.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3