ENHANCED EFFICIENCY OF RNA-GUIDED CAS12a VERSUS CAS9 TRANSGENE KNOCK-IN AND ACTIVITY AT ASCHISTOSOMA MANSONIGENOME SAFE HARBOR

Author:

Moescheid Max F.,Wisitphongpun Prapakorn,Mann Victoria H.,Quack Thomas,Grunau ChristophORCID,Grevelding Christoph G.,Ittiprasert WannapornORCID,Brindley Paul J.

Abstract

ABSTRACTRecently, we reported programmed Cas9 mediated insertion of a reporter gene into a gene safe harbor site, GSH1, ofSchistosoma mansonivia homology-directed repair (HDR) using overlapping guide RNAs. Here, we report efficient and precise CRISPR/Cas12a-mediated homology directed insertion (knockin, KI) of a 5’ C6-PEG10-modified double-stranded transgene bearing microhomology arms, 50 nt in length, at GSH1. At the outset, we undertook bioinformatic and computational analysis following by experimental verification of the regulatory activity of endogenous schistosome ubiquitin (SmUbi) promoter and terminator, to drive strong reporter gene expression. Green fluorescent protein activity driven by SmUbi followed electroporation-mediated transfection of schistosome eggs. HDR induced by RNA-guided CRISPR/Cas12a, which releases overhanging DNA strands of 18-24, delivered more efficient KI than CRISPR/Cas9. In this non-model pathogen, programmed KI facilitated precise chromosomal integration of the reporter-gene with at GSH1. The approach advances schistosome transgenesis field and may also advance functional genomics and transfection methods in related parasitic and non-parasitic helminths, which hitherto lack these tools.Author summaryGenome editing (CRISPR) technology is revolutionizing advances in biology, medicine, and agriculture. Transgenesis approaches are integral in diverse applications including gene therapy, biotherapeutics, deciphering host-pathogen interactions, and enhancements in agricultural production. Parasitic worms that are responsible for infectious diseases including neglected tropical diseases (NTDs), which cause substantial morbidity and mortality. NTDs mainly occur in the Global South, and they are responsible for a disease burden that exceeds that caused by malaria and tuberculosis. Infections with parasitic helminths also are responsible for immense economic burden in the agriculture. Tools for functional genomics in parasitic helminths are limited. Access to CRISPR-based approaches can be expected to hasten development of drug and/or vaccine targets for these diseases. Here, we focused on the helminthSchistosoma mansoni, a water borne parasite of humans, and which is endemic in Africa, and northeastern South America. To advance the state of the art in laboratory techniques currently used to study the biology and pathogenesis of this and related pathogens, we evaluated a spectrum of technological approaches aimed at improved current lab practice in this field. The findings demonstrated that specific technical and chemical modifications, including deploying a DNA cutting enzyme termed Cas12a along with a transgene with chemically modified short flanking sequences (homology arms) provided improved gene editing efficiency for this schistosome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3