Mechanisms of type I interferon production by chicken TLR21

Author:

Guabiraba RodrigoORCID,Rodrigues Damaris Ribeiro,Manna Paul T.ORCID,Chollot Mélanie,Saint-Martin Vincent,Trapp Sascha,Oliveira Marisa,Bryant Clare E,Ferguson Brian JORCID

Abstract

AbstractThe innate immune response relies on the ability of host cells to rapidly detect and respond to microbial nucleic acids. Toll-like receptors (TLRs), a class of pattern recognition receptors (PRRs), play a fundamental role in distinguishing self from non-self at the molecular level. In this study, we focused on TLR21, an avian TLR that recognizes DNA motifs commonly found in bacterial genomic DNA, specifically unmethylated CpG motifs. TLR21 is believed to act as a functional homologue to mammalian TLR9. By analysing TLR21 signalling in chickens, we sought to elucidate avian TLR21 activation outputs in parallel to that of other nucleic acid species. Our analyses revealed that chicken TLR21 (chTLR21) triggers the activation of NF-κB and induces a potent type-I interferon response in chicken macrophages, similar to the signalling cascades observed in mammalian TLR9 activation. Notably, the transcription of interferon beta (IFNB) by chTLR21 was found to be dependent on both NF-κB and IRF7 signalling, but independent of the TBK1 kinase, a distinctive feature of mammalian TLR9 signalling. These findings highlight the conservation of critical signalling components and downstream responses between avian TLR21 and mammalian TLR9, despite their divergent evolutionary origins. These insights into the evolutionarily conserved mechanisms of nucleic acid sensing contribute to the broader understanding of host-pathogen interactions across species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3