Functional genomics implicates natural killer cells as potential key drivers in the pathogenesis of ankylosing spondylitis

Author:

Chiñas Marcos,Fernandez-Salinas Daniela,Aguiar Vitor R. C.ORCID,Nieto-Caballero Victor E.,Lefton Micah,Nigrovic Peter A.ORCID,Ermann JoergORCID,Gutierrez-Arcelus MariaORCID

Abstract

AbstractObjectiveMultiple lines of evidence indicate that ankylosing spondylitis (AS) is a lymphocyte-driven disease. However, which lymphocyte populations are critical in AS pathogenesis is not known. In this study, we aimed to identify the key cell types mediating the genetic risk in AS using an unbiased integrative functional genomics approach.MethodsWe integrated GWAS data with epigenomic and transcriptomic datasets of immune cells in healthy humans. To quantify enrichment of cell type-specific open chromatin regions or gene expression in AS risk loci, we used three published methods which have identified cell types for other diseases. Additionally, we performed co-localization analyses between GWAS risk loci and genetic variants associated with gene expression (eQTL) to find putative target genes of AS risk variants.ResultsNatural killer (NK) cell-specific open chromatin regions are significantly enriched in heritability for AS, compared to other immune cell types such as T cells, B cells, and monocytes. This finding was consistent between two AS GWAS. Using RNA-seq data, we validated that genes in AS risk loci are enriched in NK cell-specific gene expression. Expression levels of AS-associated genes, such asRUNX3,TBX21,TNFRSF1A, andNPEPPS, were found to be highest in NK cells compared to five T cell subsets. Using the human Space-Time Gut Cell Atlas we found significant upregulation of AS-associated genes predominantly in NK cells. Co-localization analysis revealed four AS risk loci affecting regulation of candidate target genes in NK cells: two known loci,ERAP1 and TNFRSF1A, and two under-studied loci,ENTR1(akaSDCCAG3) andB3GNT2.ConclusionOur results point to NK cells as potential key drivers in the development of AS and highlight four putative target genes for functional follow-up in NK cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3