Investigating structural variant, indel and single nucleotide polymorphism differentiation between locally adapted Atlantic salmon populations

Author:

Lecomte LaurieORCID,Árnyasi Mariann,Ferchaud Anne-Laure,Kent Matthew,Lien Sigbjørn,Stenløkk Kristina,Sylvestre Florent,Mérot Claire,Bernatchez Louis

Abstract

AbstractGenomic structural variants (SVs) are now recognized as an integral component of intraspecific polymorphism and are known to contribute to evolutionary processes in various organisms. However, they are inherently difficult to detect and genotype from readily available short-read sequencing data, and therefore remain poorly documented in wild populations. Salmonid species displaying strong interpopulation variability in both life history traits and habitat characteristics, such as Atlantic salmon (Salmo salar), offer a prime context for studying adaptive polymorphism, but the contribution of SVs to fine-scale local adaptation has yet to be explored. Here, we performed a comparative analysis of SVs, single nucleotide polymorphisms (SNPs) and small indels (< 50 bp) segregating in the Romaine and Puyjalon salmon, two putatively locally adapted populations inhabiting neighboring rivers (Québec, Canada) and showing pronounced variation in life history traits, namely growth, fecundity, and age at maturity and at smoltification. We first catalogued polymorphism using a hybrid SV characterization approach pairing both short (16X) and long-read sequencing (20X) for variant discovery with graph-based genotyping of SVs across 60 salmon genomes, along with characterization of SNPs and small indels from short reads. We thus identified 115,907 SVs, 8,777,832 SNPs and 1,089,321 short indels, with SVs covering 4.8 times more base pairs than SNPs. All three variant types revealed a highly congruent population structure and similar patterns ofFSTand density variation along the genome. Finally, we performed outlier detection and redundancy analysis (RDA) to identify variants of interest in the putative local adaptation of Romaine and Puyjalon salmon. Genes located near these variants were enriched for biological processes related to nervous system function, suggesting that observed variation in traits such as age at smoltification could arise from differences in neural development. This study therefore demonstrates the feasibility of large-scale SV characterization and highlights its relevance for salmonid population genomics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3