Individual Differences Reveal the Utility of Temporal Fine-Structure Processing for Speech Perception in Noise

Author:

Borjigin AgudemuORCID,Bharadwaj Hari M.ORCID

Abstract

AbstractThe auditory system is unique among sensory systems in its ability to phase lock to and precisely follow very fast cycle-by-cycle fluctuations in the phase of sound-driven cochlear vibrations. Yet, the perceptual role of this temporal fine structure (TFS) code is debated. This fundamental gap is attributable to our inability to experimentally manipulate TFS cues without altering other perceptually relevant cues. Here, we circumnavigated this limitation by leveraging individual differences across 200 participants to systematically compare variations in TFS sensitivity to performance in a range of speech perception tasks. Results suggest that robust TFS sensitivity does not confer additional masking release from pitch or spatial cues, but appears to confer resilience against the effects of reverberation. Yet, across conditions, we also found that greater TFS sensitivity is associated with faster response times, consistent with reduced listening effort. These findings highlight the perceptual significance of TFS coding for everyday hearing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3