Light-sensitive phosphorylation regulates enzyme activity and filament assembly of human IMPDH1 retinal splice variants

Author:

Calise S. JohnORCID,O’Neill Audrey G.ORCID,Burrell Anika L.ORCID,Dickinson Miles S.ORCID,Molfino Josephine,Clarke Charlie,Quispe Joel,Sokolov David,Buey Rubén M.,Kollman Justin M.ORCID

Abstract

ABSTRACTInosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme inde novoguanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.SIGNIFICANCE STATEMENTOver 20 different metabolic enzymes form micron-scale filaments in cells, suggesting that filament assembly is a conserved mechanism for regulating diverse metabolic pathways. Filament assembly regulates catalytic activity of many of these enzymes, including inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme inde novoGTP biosynthesis. The vertebrate retina expresses two IMPDH1 splice variants that are critical for maintaining nucleotide levels required for phototransduction. Here, we show that filament assembly by these variants is itself controlled by phosphorylation at a single residue, adding further complexity to the tight regulation of nucleotide metabolism in the retina. Phosphorylation and other posttranslational modifications are likely to be a general regulatory mechanism controlling filament assembly by enzymes in many different metabolic pathways.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3