Exploring the metabolic profiling ofA. baumanniifor antimicrobial development using genome-scale modeling

Author:

Leonidou NantiaORCID,Xia YufanORCID,Dräger AndreasORCID

Abstract

ABSTRACTWith the emergence of multidrug-resistant bacteria, the World Health Organization published a catalog of microorganisms in 2017 for which new antibiotics are urgently needed. Within this list, the carbapenem-resistant pathogen Acinetobacter baumannii, belonging to the ESKAPE group, has been granted the “critical” status. Over the years, such isolates have been detected within healthcare units, posing a global threat to upcoming pandemics. One way to facilitate a systemic view of bacterial metabolism and allow the development of new therapeutics based on environmental and genetic alterations is to apply constraint-based modeling on metabolic networks. We developed a versatile workflow to build high-quality and simulation-ready genome-scale metabolic models. We applied our workflow to create a novel metabolic model for A. baumannii and validated its predictive capabilities using experimental nutrient utilization and gene essentiality data. Our analysis showed that our modeliACB23LX could recapitulate cellular metabolic phenotypes observed duringin vitroexperiments with an accuracy of over 80%, while positive biomass production rates were observed in growth media relevant toA. baumannii. Additionally, we identified putative essential genes with no human counterparts, which could serve as novel antibiotic candidates for the development of future antimicrobial strategies. Finally, we have assembled the first curated collection of available reconstructions for distinctA. baumanniistrains and analyzed their growth characteristics. The presented models herein are in a standardized and well-curated format, facilitating their usability, while they can be used to guide the reconstruction of multi-strain networks. Ultimately, they serve as a knowledge base for reliable predictions under various perturbations and the development of effective drugs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3