Assessing generalizability of an AI-based visual test for cervical cancer screening

Author:

Ahmed Syed RakinORCID,Egemen Didem,Befano Brian,Rodriguez Ana Cecilia,Jeronimo Jose,Desai KananORCID,Teran Carolina,Alfaro Karla,Fokom-Domgue JoelORCID,Charoenkwan Kittipat,Mungo ChemtaiORCID,Luckett Rebecca,Saidu RakiyaORCID,Raiol Taina,Ribeiro Ana,Gage Julia C.,de Sanjose Silvia,Kalpathy-Cramer Jayashree,Schiffman Mark

Abstract

ABSTRACTA number of challenges hinder artificial intelligence (AI) models from effective clinical translation. Foremost among these challenges are: (1) reproducibility or repeatability, which is defined as the ability of a model to make consistent predictions on repeat images from the same patient taken under identical conditions; (2) the presence of clinical uncertainty or the equivocal nature of certain pathologies, which needs to be acknowledged in order to effectively, accurately and meaningfully separate true normal from true disease cases; and (3) lack of portability or generalizability, which leads AI model performance to differ across axes of data heterogeneity. We recently investigated the development of an AI pipeline on digital images of the cervix, utilizing a multi-heterogeneous dataset (“SEED”) of 9,462 women (17,013 images) and a multi-stage model selection and optimization approach, to generate a diagnostic classifier able to classify images of the cervix into “normal”, “indeterminate” and “precancer/cancer” (denoted as “precancer+”) categories. In this work, we investigated the performance of this multiclass classifier on external data (“EXT”) not utilized in training and internal validation, to assess the portability of the classifier when moving to new settings. We assessed both the repeatability and classification performance of our classifier across the two axes of heterogeneity present in our dataset: image capture device and geography, utilizing both out-of-the-box inference and retraining with “EXT”. Our results indicate strong repeatability of our multiclass model utilizing Monte-Carlo (MC) dropout, which carries over well to “EXT” (95% limit of agreement range = 0.2 - 0.4) even in the absence of retraining, as well as strong classification performance of our model on “EXT” that is achieved with retraining (% extreme misclassifications = 4.0% for n = 26 “EXT” individuals added to “SEED” in a 2n normal : 2n indeterminate : n precancer+ ratio), and incremental improvement of performance following retraining with images from additional individuals. We additionally find that device-level heterogeneity affects our model performance more than geography-level heterogeneity. Our work supports both (1) the development of comprehensively designed AI pipelines, with design strategies incorporating multiclass ground truth and MC dropout, on multi-heterogeneous data that are specifically optimized to improve repeatability, accuracy, and risk stratification; and (2) the need for optimized retraining approaches that address data heterogeneity (e.g., when moving to a new device) to facilitate effective use of AI models in new settings.AUTHOR SUMMARYArtificial intelligence (AI) model robustness has emerged as a pressing issue, particularly in medicine, where model deployment requires rigorous standards of approval. In the context of this work, model robustness refers to both the reproducibility of model predictions across repeat images, as well as the portability of model performance to external data. Real world clinical data is often heterogeneous across multiple axes, with distribution shifts in one or more of these axes often being the norm. Current deep learning (DL) models for cervical cancer and in other domains exhibit poor repeatability and overfitting, and frequently fail when evaluated on external data. As recently as March 2023, the FDA issued a draft guidance on effective implementation of AI/DL models, proposing the need for adapting models to data distribution shifts.To surmount known concerns, we conducted a thorough investigation of the generalizability of a deep learning model for cervical cancer screening, utilizing the distribution shifts present in our large, multi-heterogenous dataset. We highlight optimized strategies to adapt an AI-based clinical test, which in our case was a cervical cancer screening triage test, to external data from a new setting. Given the severe clinical burden of cervical cancer, and the fact that existing screening approaches, such as visual inspection with acetic acid (VIA), are unreliable, inaccurate, and invasive, there is a critical need for an automated, AI-based pipeline that can more consistently evaluate cervical lesions in a minimally invasive fashion. Our work represents one of the first efforts at generating and externally validating a cervical cancer diagnostic classifier that is reliable, consistent, accurate, and clinically translatable, in order to triage women into appropriate risk categories.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Dermatologist-level classification of skin cancer with deep neural networks;Nat 2017 5427639 [Internet],2017

2. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network;Nat Med 2019 251 [Internet],2019

3. A survey on deep learning in medicine: Why, how and when?;Inf Fusion,2021

4. High-performance medicine: the convergence of human and artificial intelligence;Nat Med 2019 251 [Internet],2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3