Lys716 in the transmembrane domain of yeast mitofusin Fzo1 modulates anchoring and fusion

Author:

Versini RaphaëlleORCID,Baaden MarcORCID,Cavellini LaetitiaORCID,Cohen Mickaël M.ORCID,Taly AntoineORCID,Fuchs Patrick F.J.

Abstract

AbstractOuter mitochondrial membrane (OMM) fusion is an important process for the cell and organism survival, as its dysfunction is linked to neurodegenerative diseases and cancer. The OMM fusion is mediated by members of the dynamin-related protein (DRP) family, named mitofusins. The exact mechanism by which the mitofusins contribute to these diseases, as well as the exact molecular fusion mechanism mediated by mitofusin, remains elusive.We have performed extensive multiscale molecular dynamics simulations using both coarse-grained and all-atom approaches to predict the dimerization of two transmembrane domain (TM) helices of the yeast mitofusin Fzo1. We identify specific residues, such as Lys716, that can modulate dimer stability. Comparison with a previous computational model reveals remarkable differences in helix crossing angles and interfacial contacts. Overall, however, the TM1-TM2 interface appears to be stable in the Martini and CHARMM force fields. Replica-exchange simulations further tune a detailed atomistic model, as confirmed by a remarkable agreement with an independent prediction of the Fzo1-Ugo1 complex by AlphaFold2. Functional implications, including a possible role of Lys716 that could affect membrane interactions during fusion, are suggested and consistent with experiments monitoring mitochondrial respiration of selected Fzo1 mutants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3