Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome

Author:

Bieda Mark,Xu Xiaoqin,Singer Michael A.,Green Roland,Farnham Peggy J.

Abstract

The E2F family of transcription factors regulates basic cellular processes. Here, we take an unbiased approach towards identifying E2F1 target genes by examining localization of E2F1-binding sites using high-density oligonucleotide tiling arrays. To begin, we developed a statistically-based methodology for analysis of ChIP-chip data obtained from arrays that represent 30 Mb of the human genome. Using this methodology, we identified regions bound by E2F1, MYC, and RNA Polymerase II (POLR2A). We found a large number of binding sites for all three factors; extrapolation suggests there may be ∼20,000–30,000 E2F1- and MYC-binding sites and ∼12,000–17,000 active promoters in HeLa cells. In contrast to our results for MYC, we find that the majority of E2F1-binding sites (>80%) are located in core promoters and that 50% of the sites overlap transcription starts. Only a small fraction of E2F1 sites possess the canonical binding motif. Surprisingly, we found that ∼30% of genes in the 30-Mb region possessed an E2F1 binding site in a core promoter and E2F1 was bound near to 83% of POLR2A-bound sites. To determine if these results were representative of the entire human genome, we performed ChIP-chip analyses of ∼24,000 promoters and confirmed that greater than 20% of the promoters were bound by E2F1. Our results suggest that E2F1 is recruited to promoters via a method distinct from recognition of the known consensus site and point toward a new understanding of E2F1 as a factor that contributes to the regulation of a large fraction of human genes.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference45 articles.

1. The E2F family: specific functions and overlapping interests

2. Pocket Protein Complexes Are Recruited to Distinct Targets in Quiescent and Proliferating Cells

3. Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo.;Blake;Mol. Cell. Biol.,1989

4. Three functional classes of transcriptional activation domains.;Blau;Mol. Cell. Biol.,1996

5. Retinoblastoma protein recruits histone deacetylase to repress transcription

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3