The impact of distributional assumptions in gene-set and pathway analysis: how far can it go wrong?

Author:

Ho Chi-Hsuan,Huang Yu-Jyun,Lai Ying-Ju,Mukherjee Rajarshi,Hsiao Chuhsing KateORCID

Abstract

ABSTRACTGene-set analysis (GSA) has been one of the standard procedures for exploring potential biological functions when a group of differentially expressed genes have been derived. The development of its methodology has been an active research topic in recent decades. Many GSA methods, when newly proposed, rely on simulation studies to evaluate their performance with a common implicit assumption that the multivariate expression values are normally distributed. The validity of this assumption has been disputed in several studies but no systematic analysis has been carried out to assess the influence of this distributional assumption. Our goal in this study is not to propose a new GSA method but to first examine if the multi-dimensional gene expression data in gene sets follow a multivariate normal distribution (MVN). Six statistical methods in three categories of MVN tests were considered and applied to a total of twenty-two datasets of expression data from studies involving tumor and normal tissues, with ten signaling pathways chosen as the gene sets. Second, we evaluated the influence of non-normality on the performance of current GSA tools, including parametric and non-parametric methods. Specifically, the scenario of mixture distributions representing the case of different tumor subtypes was considered. Our first finding suggests that the MVN assumption should be carefully dealt with. It does not hold true in many applications tested here. The second investigation of the GSA tools demonstrates that the non-normality does affect the performance of these GSA methods, especially when subtypes exist. We conclude that the use of the inherent multivariate normality assumption should be assessed with care in evaluating new GSA tools, since this MVN assumption cannot be guaranteed and this assumption affects strongly the performance of GSA methods. If a newly proposed GSA method is to be evaluated, we recommend the incorporation of multivariate non-normal distributions or sampling from large databases if available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3