Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo.

Author:

Dumont D J,Gradwohl G,Fong G H,Puri M C,Gertsenstein M,Auerbach A,Breitman M L

Abstract

The receptor tyrosine kinases (RTKs) expressed on the surface of endothelial cells are likely to play key roles in initiating the program of endothelial cell growth during development and subsequent vascularization during wound healing and tumorigenesis. Expression of the Tek RTK during mouse development is restricted primarily to endothelial cells and their progenitors, the angioblasts, suggesting that Tek is a key participant in vasculogenesis. To investigate the role that Tek plays within the endothelial cell lineage, we have disrupted the Tek signaling pathway using two different genetic approaches. First, we constructed transgenic mice expressing a dominant-negative form of the Tek receptor. Second, we created a null allele of the tek gene by homologous recombination in embryonic stem (ES) cells. Transgenic mice expressing dominant-negative alleles of Tek or homozygous for a null allele of the tek locus both died in utero with similar defects in the integrity of their endothelium. By crossing transgenic mice that express the lacZ reporter gene under the transcriptional control of the endothelial cell-specific tek promoter, we found that the extraembryonic and embryonic vasculature was patterned correctly. However, homozygous tek embryos had approximately 30% and 75% fewer endothelial cells at day 8.5 and 9.0, respectively. Homozygous null embryos also displayed abnormalities in heart development, consistent with the conclusion that Tek is necessary for endocardial/myocardial interactions during development. On the basis of the analysis of mice carrying either dominant-negative or null mutations of the tek gene, these observations demonstrate that the Tek signaling pathway plays a critical role in the differentiation, proliferation, and survival of endothelial cells in the mouse embryo.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3