Prediction of antidepressant side effects in the Genetic Link to Anxiety and Depression Study

Author:

Li DanyangORCID,Lin Yuhao,Davies Helena L.,Zvrskovec Johan Källberg,Wang Rujia,Armour Chérie,Jones Ian R.,McIntosh Andrew M.,Kingston Nathalie,Bradley John R.,Hübel Christopher,Kalsi Gursharan,Coleman Jonathan R. I., ,Hotopf Matthew,Eley Thalia C.,Vassos Evangelos,Iniesta Raquel,Breen Gerome

Abstract

AbstractAntidepressants are the most common treatment for moderate or severe depression. Side effects are crucial indicators for antidepressants, but their occurrence varies widely among individuals. In this study, we leveraged genetic and medical data from self-reported questionnaires in the Genetic Links to Anxiety and Depression (GLAD) study to build prediction models of side effects and subsequent discontinuation across three antidepressant classes (SSRI, SNRI, tricyclic antidepressant (TCA)) at the first and the last (most recent) year of prescription. We included 259 predictors spanning genetic, clinical, illness, demographic, and antidepressant information. Six prediction models were trained, and their performance was compared. The final dataset comprised 4,354 individuals taking SSRI in the first prescription and 3,414 taking SSRI, SNRI or TCA in the last year of prescription. In the first year, the best area under the receiver operating characteristic curve (AUROC) for predicting SSRI discontinuation and side effects were 0.65 and 0.60. In the last year of SSRI prescription, the highest AUROC reached 0.73 for discontinuation and 0.87 for side effects. Models for predicting discontinuation and side effects of SNRI and TCA showed comparable performance. The history of side effects and discontinuation of antidepressant use were the most influential predictors of the outcomes in the last year of prescription. When examining 30 common antidepressant side effect symptoms, most of them were differentially prevalent between antidepressant classes. Our findings suggested the feasibility of predicting antidepressant side effects using a self-reported questionnaire, particularly for the last prescription. These results could contribute valuable insights for the development of clinical decisions aimed at optimising treatment selection with enhanced tolerability but require replication in medical record linkage or prospective data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3