Identification of a divalent metal transporter required for cellular iron metabolism in malaria parasites

Author:

Loveridge Kade M.ORCID,Sigala Paul A.ORCID

Abstract

ABSTRACTPlasmodium falciparummalaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells,P. falciparumrequires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron. Although most FV heme is sequestered into inert hemozoin crystals, prior studies indicate that trace heme escapes biomineralization and is susceptible to non-enzymatic degradation within the oxidizing FV environment to release labile iron. Parasites retain a homolog of divalent metal transporter 1 (DMT1), a known mammalian iron transporter, but its role inP. falciparumiron acquisition has not been tested. Our phylogenetic studies indicate thatP. falciparumDMT1 (PfDMT1) retains conserved molecular features critical for metal transport. We localized this protein to the FV membrane and defined its orientation in an export-competent topology. Conditional knockdown of PfDMT1 expression is lethal to parasites, which display broad cellular defects in iron-dependent functions, including impaired apicoplast biogenesis and mitochondrial polarization. Parasites are selectively rescued from partial PfDMT1 knockdown by supplementation with exogenous iron, but not other metals. These results support a cellular paradigm whereby PfDMT1 is the molecular gatekeeper to essential iron acquisition by blood-stage malaria parasites and suggest that therapeutic targeting of PfDMT1 may be a potent antimalarial strategy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3