PS Poly: A chain tracing algorithm to determine persistence length and categorize complex polymers by shape

Author:

Conley Elizabeth A.,Schaefer Katherine G.,Davison Harrison C.,King Gavin M.ORCID

Abstract

AbstractThe fundamental molecules of life are polymers. Prominent examples include nucleic acids and proteins, both of which assume a vast array of mechanical properties and three-dimensional shapes. The persistence length represents a numerical value to classify the bending rigidity of individual polymers. The shape of a polymer, dictated by the topology of the polymer backbone - a line trace through the center of the polymer along the contour path – is also a critical metric. Common architectures include linear, ring-like or cyclic, and branched; combinations of these can also exist, as in complex polymer networks. Determination of persistence length and shape are largely informative to polymer function and stability in biological environments. Here we demonstrate PS Poly, a near-fully automated algorithm to obtain polymer persistence length and shape from single molecule images obtained in physiologically relevant fluid conditions via atomic force microscopy. The algorithm, which involves image reduction via skeletonization followed by end point and branch point detection via filtering, is capable of rapidly analyzing thousands of polymers with subpixel precision. Algorithm outputs were verified by analysis of deoxyribose nucleic acid, a very well characterized macromolecule. The utility of method was further demonstrated by application to a recently discovered polypeptide chain named candidalysin. This toxic protein segment polymerizes in solution and represents the first human fungal pathogen yet discovered. PS poly is a robust and general algorithm. It can be used to extract fundamental information about polymer backbone stiffness, shape, and more generally, polymerization mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3