Phylogenetic-based methods for fine-scale classification of PRRSV-2 ORF5 sequences: a comparison of their robustness and reproducibility

Author:

VanderWaal KimberlyORCID,Pamornchainvakul Nakarin,Kikuti Mariana,Linhares Daniel,Trevisan Giovani,Zhang Jianqiang,Anderson Tavis K.ORCID,Zeller Michael,Rossow Stephanie,Holtkamp Derald J.,Makau Dennis N.,Corzo Cesar A.,Paploski Igor A.D.

Abstract

AbstractDisease management and epidemiological investigations of porcine reproductive and respiratory syndrome virus-type 2 (PRRSV-2) often rely on grouping together highly related sequences. In the USA, the last five years have seen a major paradigm shift within the swine industry when classifying PRRSV-2, beginning to move away from RFLP (restriction fragment length polymorphisms)-typing and adopting the use of phylogenetic lineage-based classification. However, lineages and sub-lineages are large and genetically diverse, and the rapid mutation rate of PRRSV coupled with the global prevalence of the disease has made it challenging to identify new and emerging variants. Thus, within the lineage system, a dynamic fine-scale classification scheme is needed to provide better resolution on the relatedness of PRRSV-2 viruses to inform disease management and monitoring efforts and facilitate research and communication surrounding circulating PRRSV viruses. Here, we compare potential fine-scale systems for classifying PRRSV-2 variants (i.e., genetic clusters of closely related ORF5 sequences at finer scales than sub-lineage) using a database of 28,730 sequences from 2010 to 2021, representing >55% of the U.S. pig population. In total, we compared 140 approaches that differed in their tree-building method, criteria, and thresholds for defining variants within phylogenetic trees usingTreeCluster.Three approaches produced epidemiologically meaningful variants (i.e., ≥5 sequences per cluster), and resulted in reproducible and robust outputs even when the input data or input phylogenies were changed. In the three best performing approaches, the average genetic distance amongst sequences belonging to the same variant was 2.1 – 2.5%, and the genetic divergence between variants was 2.5-2.7%. Machine learning classification algorithms were also trained to assign new sequences to an existing variant with >95% accuracy, which shows that newly generated sequences could be assigned without repeating the phylogenetic and clustering analyses. Finally, we identified 73 sequence-clusters (dated <1 year apart with close phylogenetic relatedness) associated with circulation events on single farms. The percent of farm sequence-clusters with an ID change was 6.5-8.7% for our best approaches. In contrast, ∼43% of farm sequence-clusters had variation in their RFLP-type, further demonstrating how our proposed fine-scale classification system addresses shortcomings of RFLP-typing. Through identifying robust and reproducible classification approaches for PRRSV-2, this work lays the foundation for a fine-scale system that would more reliably group related field viruses and provide better improved clarity for decision-making surrounding disease management.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3