Human skeletal muscle possesses an epigenetic memory of high intensity interval training

Author:

Pilotto AMORCID,Turner DCORCID,Crea EORCID,Mazzolari RORCID,Brocca LORCID,Pellegrino MAORCID,Miotti DORCID,Bottinelli RORCID,Sharples APORCID,Porcelli SORCID

Abstract

ABSTRACTINTRODUCTIONHuman skeletal muscle displays an epigenetic memory of resistance exercise induced by hypertrophy. It is unknown, however, whether high-intensity interval training (HIIT) also evokes an epigenetic muscle memory. This study employed repeated training intervention interspersed with a detraining period to assess epigenetic memory of HIIT.METHODSTwenty healthy subjects (25±5yrs) completed two HIIT interventions (training and retraining) lasting 2 months, separated by 3 months of detraining. Measurements at baseline, after training, detraining and retraining included maximal oxygen consumption (V̇O2max). Vastus lateralis biopsies were taken for genome-wide DNA methylation and targeted gene expression analyses. RESULTS: V̇O2maximproved during training and retraining (p<0.001) without differences between interventions (p>0.58). Thousands of differentially methylated positions (DMPs) predominantly demonstrated a hypomethylated state after training, retained even after 3-months exercise cessation and into retraining. Five genes; ADAM19, INPP5a, MTHFD1L, CAPN2, SLC16A3 possessed differentially methylated regions (DMRs) with retained hypomethylated memory profiles and increased gene expression. The retained hypomethylation during detraining was associated with an enhancement in expression of the same genes even after 3 months of detraining. SLC16A3, INPP5a, CAPN2 are involved in lactate transport and calcium signaling.CONCLUSIONSDespite similar physiological adaptations between training and retraining, memory profiles were found at epigenetic and gene expression level, characterized by retained hypomethylation and increased gene expression after training into long-term detraining and retraining. These genes were associated with calcium signaling and lactate transport. Whilst significant memory was not observed in physiological parameters, our novel findings indicate that human skeletal muscle possesses an epigenetic memory of HIIT.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3