Colorectal ALOX15 as a host factor determinant of EPA and DHA effects on colorectal carcinogenesis

Author:

Zuo XiangshengORCID,Kiyasu YoshiyukiORCID,Liu Yi,Deguchi Yasunori,Liu Fuyao,Moussalli MichelineORCID,Tan Lin,Wei Bo,Wei DaoyanORCID,Yang Peiying,Shureiqi ImadORCID

Abstract

ABSTRACTEicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil, are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. However, studies investigating the effects of EPA and DHA on colorectal carcinogenesis (CRC) have yielded conflicting results. The factors that determine these discrepant results remain unknown. Resolvins, oxidative metabolites of EPA and DHA, inhibit key pro-tumorigenic cytokine and chemokine signaling of colorectal cancer (e.g., IL-6, IL-1β, and CCL2). 15-lipoxygenase-1 (ALOX15), a critical enzyme for resolvin generation is commonly lost during human CRC. Whether ALOX15 expression, as a host factor, modulates the effects of EPA and DHA on CRC remains unknown. Therefore, we evaluated the effects of ALOX15 transgenic expression in colonic epithelial cells on resolvin generation by EPA and DHA and CRC in mouse models representative of human CRC. Our results revealed that 1) EPA and DHA effects on CRC were diverse, ranging from suppressive to promotive, and these effects were occasionally altered by the formulations of EPA and DHA (free fatty acid, ethyl ester, triglyceride); 2) EPA and DHA uniformly suppressed CRC in the presence of intestinal ALOX15 transgenic expression, which induced the production of resolvins, decreased colonic CCL3-5 and CXCL-5 expression and tumor associated macrophages while increasing CD8 T cell abundance in tumor microenvironment; and 3) RvD5, the predominant resolvin produced by ALOX15, inhibited macrophage generation of pro-tumorigenic cytokines. These findings demonstrate the significance of intestinal ALOX15 expression as a host factor in determining the effects of EPA and DHA on CRC.SignificanceEicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. Studies of EPA and DHA effects on colorectal carcinogenesis (CRC) have revealed inconsistencies; factors determining the direction of their impact on CRC have remained unidentified. Our data show that EPA and DHA effects on CRC were divergent and occasionally influenced by their formulations. More importantly, intestinal 15-lipoxgenase-1 (ALOX15) expression modulated EPA and DHA effects on CRC, leading to their consistent suppression of CRC. ALOX15 promoted EPA and DHA oxidative metabolism to generate resolvins, which inhibited key pro-tumorigenic inflammatory cytokines and chemokines, including IL-6. IL-1β, and CCL2. ALOX15 is therefore an important host factor in determining EPA and DHA effects on CRC.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

1. Clarke TC , Black LI , Stussman BJ , Barnes PM , Nahin RL . Trends in the use of complementary health approaches among adults: United States, 2002-2012. Natl Health Stat Report. 2015(79):1-16.

2. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity;Nutrients,2016

3. Profiling Lipoxygenase Metabolism in Specific Steps of Colorectal Tumorigenesis

4. Cancer Council Australia NCCP. Position statement - Omega-3 fatty acids, fish and cancer prevention [Website]. https://wiki.cancer.org.au/policy/Position_statement_-_Omega-3_fatty_acids,_fish_and_cancer_prevention#Views_on_n-3_FAs_and_fish_in_cancer_prevention_reports2023 [Position statement].

5. Sahye-Pudaruth S , Ma DWL . Assessing the Highest Level of Evidence from Randomized Controlled Trials in Omega-3 Research. Nutrients. 2023;15(4).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3