Intrinsic skeletal muscle function and contraction-stimulated glucose uptake do not vary by time-of-day in mice

Author:

Fitzgerald Liam S.,Bremner Shannon N.ORCID,Ward Samuel R.ORCID,Cho YoshitakeORCID,Schenk SimonORCID

Abstract

AbstractA growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from female mice at four times-of-day (Zeitgeber Times 1, 7, 13, 19). Significantly, while both muscles demonstrated circadian-related changes in gene expression, intrinsic contractile function, endurance, and contraction-stimulated glucose uptake were not different between the four time points. Overall, these results demonstrate that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.Impact statementEx vivotesting demonstrates that there is no time-of-day variation in the intrinsic contractile properties of skeletal muscle (including no effect on force production or endurance) or contraction-stimulated glucose uptake.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3