Sex Differences in the Association between Skeletal Muscle Energetics and Perceived Physical Fatigability: The Study of Muscle, Mobility and Aging (SOMMA)

Author:

Gay Emma L.,Coen Paul M.ORCID,Harrison Stephanie,Garcia Reagan E.,Qiao Yujia (Susanna),Goodpaster Bret H.,Forman Daniel E.,Toledo Frederico G. S.,Distefano Giovanna,Kramer Philip A.,Ramos Sofhia V.,Molina Anthony J. A.,Nicklas Barbara J.,Cummings Steven R.,Cawthon Peggy M.,Hepple Russell T.,Newman Anne B.ORCID,Glynn Nancy W.ORCID

Abstract

AbstractGreater perceived physical fatigability and lower skeletal muscle energetics are predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations ofin vivo(maximal ATP production, ATPmax) andex vivo(maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher=greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher=greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N=873) were 76.3±5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (bothin vivoandex vivo) were associated with lower perceived physical fatigability, all p<0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS≥25, RPE Fatigability≥12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p<0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not thein vivomeasures (p<0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3