Computational Phenomapping of Randomized Clinical Trials to Enable Assessment of their Real-world Representativeness and Personalized Inference

Author:

Thangaraj Phyllis M.ORCID,Oikonomou Evangelos K.ORCID,Dhingra Lovedeep S.ORCID,Aminorroaya AryaORCID,Jayaram Rahul,Suchard Marc A.ORCID,Khera RohanORCID

Abstract

ABSTRACTImportanceRandomized clinical trials (RCTs) are the standard for defining an evidence-based approach to managing disease, but their generalizability to real-world patients remains challenging to quantify.ObjectiveTo develop a multidimensional patient variable mapping algorithm to quantify the similarity and representation of electronic health record (EHR) patients corresponding to an RCT and estimate the putative treatment effects in real-world settings based on individual treatment effects observed in an RCT.DesignA retrospective analysis of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial (TOPCAT; 2006-2012) and a multi-hospital patient cohort from the electronic health record (EHR) in the Yale New Haven Hospital System (YNHHS; 2015-2023).SettingA multicenter international RCT (TOPCAT) and multi-hospital patient cohort (YNHHS).ParticipantsAll TOPCAT participants and patients with heart failure with preserved ejection fraction (HFpEF) and ≥1 hospitalization within YNHHS.Exposures63 pre-randomization characteristics measured across the TOPCAT and YNNHS cohorts.Main Outcomes and MeasuresReal-world generalizability of the RCT TOPCAT using a multidimensional phenotypic distance metric between TOPCAT and YNHHS cohorts. Estimation of the individualized treatment effect of spironolactone use on all-cause mortality within the YNHHS cohort based on phenotypic distance from the TOPCAT cohort.ResultsThere were 3,445 patients in TOPCAT and 11,712 HFpEF patients across five hospital sites. Across the 63 TOPCAT variables mapped by clinicians to the EHR, there were larger differences between TOPCAT and each of the 5 EHR sites (median SMD 0.200, IQR 0.037-0.410) than between the 5 EHR sites (median SMD 0.062, IQR 0.010-0.130). The synthesis of these differences across covariates using our multidimensional similarity score also suggested substantial phenotypic dissimilarity between the TOPCAT and EHR cohorts. By phenotypic distance, a majority (55%) of TOPCAT participants were closer to each other than any individual EHR patient. Using a TOPCAT-derived model of individualized treatment benefit from spironolactone, those predicted to derive benefit and receiving spironolactone in the EHR cohorts had substantially better outcomes compared with predicted benefit and not receiving the medication (HR 0.74, 95% CI 0.62-0.89).Conclusions and RelevanceWe propose a novel approach to evaluating the real-world representativeness of RCT participants against corresponding patients in the EHR across the full multidimensional spectrum of the represented phenotypes. This enables the evaluation of the implications of RCTs for real-world patients.KEY POINTSQuestionHow can we examine the multi-dimensional generalizability of randomized clinical trials (RCT) to real-world patient populations?FindingsWe demonstrate a novel phenotypic distance metric comparing an RCT to real-world populations in a large multicenter RCT of heart failure patients and the corresponding patients in multisite electronic health records (EHRs). Across 63 pre-randomization characteristics, pairwise assessments of members of the RCT and EHR cohorts were more discordant from each other than between members of the EHR cohort (median standardized mean difference 0.200 [0.037-0.410] vs 0.062 [0.010-0.130]), with a majority (55%) of RCT participants closer to each other than any individual EHR patient. The approach also enabled the quantification of expected real world outcomes based on effects observed in the RCT.MeaningA multidimensional phenotypic distance metric quantifies the generalizability of RCTs to a given population while also offering an avenue to examine expected real-world patient outcomes based on treatment effects observed in the RCT.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3